1,990 research outputs found

    Observation of a subgap density of states in superconductor-normal metal bilayers in the Cooper limit

    Full text link
    We present transport and tunneling measurements of Pb-Ag bilayers with thicknesses, dPbd_{Pb} and dAgd_{Ag}, that are much less than the superconducting coherence length. The transition temperature, TcT_c, and energy gap, Ξ”\Delta, in the tunneling Density of States (DOS) decrease exponentially with dAgd_{Ag} at fixed dPbd_{Pb}. Simultaneously, a DOS that increases linearly from the Fermi energy grows and fills nearly 40% of the gap as TcT_c is 1/10 of TcT_c of bulk Pb. This behavior suggests that a growing fraction of quasiparticles decouple from the superconductor as TcT_c goes to 0. The linear dependence is consistent with the quasiparticles becoming trapped on integrable trajectories in the metal layer.Comment: 5 pages and 4 figures. This version is just the same as the old version except that we try to cut the unnecessary white space in the figures and make the whole paper look more compac

    Onset of Mild Cognitive Impairment in Parkinson Disease

    Get PDF
    Objective: Characterize the onset and timing of cognitive decline in Parkinson disease (PD) from the first recognizable stage of cognitively symptomatic PD-mild cognitive impairment (PD-MCI) to PD dementia (PDD). Thirty-nine participants progressed from PD to PDD and 25 remained cognitively normal. Methods: Bayesian-estimated disease-state models described the onset of an individual’s cognitive decline across 12 subtests with a change point. Results: Subtests measuring working memory, visuospatial processing ability, and crystalized memory changed significantly 3 to 5 years before their first nonzero Clinical Dementia Rating and progressively worsened from PD to PD-MCI to PDD. Crystalized memory deficits were the hallmark feature of imminent conversion of cognitive status. Episodic memory tasks were not sensitive to onset of PD-MCI. For cognitively intact PD, all 12 subtests showed modest linear decline without evidence of a change point. Conclusions: Longitudinal disease-state models support a prodromal dementia stage (PD-MCI) marked by early declines in working memory and visuospatial processing beginning 5 years before clinical diagnosis of PDD. Cognitive declines in PD affect motor ability (bradykinesia), working memory, and processing speed (bradyphrenia) resulting in PD-MCI where visuospatial imagery and memory retrieval deficits manifest before eventual development of overt dementia. Tests of episodic memory may not be sufficient to detect and quantify cognitive decline in PD

    A molecular biology and phase II trial of lapatinib in children with refractory CNS malignancies: a pediatric brain tumor consortium study.

    Get PDF
    High expression of ERBB2 has been reported in medulloblastoma and ependymoma; EGFR is amplified and over-expressed in brainstem glioma suggesting these proteins as potential therapeutic targets. We conducted a molecular biology (MB) and phase II study to estimate inhibition of tumor ERBB signaling and sustained responses by lapatinib in children with recurrent CNS malignancies. In the MB study, patients with recurrent medulloblastoma, ependymoma, and high-grade glioma (HGG) undergoing resection were stratified and randomized to pre-resection treatment with lapatinib 900 mg/m(2) dose bid for 7-14 days or no treatment. Western blot analysis of ERBB expression and pathway activity in fresh tumor obtained at surgery estimated ERBB receptor signaling inhibition in vivo. Drug concentration was simultaneously assessed in tumor and plasma. In the phase II study, patients, stratified by histology, received lapatinib continuously, to assess sustained response. Eight patients, on the MB trial (four medulloblastomas, four ependymomas), received a median of two courses (range 1-6+). No intratumoral target inhibition by lapatinib was noted in any patient. Tumor-to-plasma ratios of lapatinib were 10-20 %. In the 34 patients (14 MB, 10 HGG, 10 ependymoma) in the phase II study, lapatinib was well-tolerated at 900 mg/m(2) dose bid. The median number of courses in the phase II trial was two (range 1-12). Seven patients (three medulloblastoma, four ependymoma) remained on therapy for at least four courses range (4-26). Lapatinib was well-tolerated in children with recurrent or CNS malignancies, but did not inhibit target in tumor and had little single agent activity.Fil: Fouladi, Maryam. St. Jude Children’s Research Hospital; Estados UnidosFil: Stewart, Clinton F.. St. Jude Children’s Research Hospital; Estados UnidosFil: Blaney, Susan M.. Baylor College of Medicine. Texas Children’s Cancer Center; Estados UnidosFil: Onar Thomas, Arzu. St. Jude Children’s Research Hospital; Estados UnidosFil: Schaiquevich, Paula Susana. St. Jude Children’s Research Hospital; Estados Unidos. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas; ArgentinaFil: Packer, Roger J.. Children’s National Medical Center; Estados UnidosFil: Goldman, Stewart. Anne and Robert H. Lurie Children’s Hospital of Chicago; Estados UnidosFil: Geyer, J. Rusell. Children’s Hospital and Regional Medical Center; Estados UnidosFil: Gajjar, Amar. St. Jude Children’s Research Hospital; Estados UnidosFil: Kun, Larry E.. St. Jude Children’s Research Hospital; Estados UnidosFil: Boyett, James M.. St. Jude Children’s Research Hospital; Estados UnidosFil: Gilbertson, Richard J.. St. Jude Children’s Research Hospital; Estados Unido

    Purely electronic transport and localization in the Bose glass

    Full text link
    We discuss transport and localization properties on the insulating side of the disorder dominated superconductor-insulator transition, described in terms of the dirty boson model. Analyzing the spectral properties of the interacting bosons in the absence of phonons, we argue that the Bose glass phase admits three distinct regimes. For strongest disorder the boson system is a fully localized, perfect insulator at any temperature. At smaller disorder, only the low temperature phase exhibits perfect insulation while delocalization takes place above a finite temperature. We argue that a third phase must intervene between these perfect insulators and the superconductor. This conducting Bose glass phase is characterized by a mobility edge in the many body spectrum, located at finite energy above the ground state. In this insulating regime purely electronically activated transport occurs, with a conductivity following an Arrhenius law at asymptotically low temperatures, while a tendency to superactivation is predicted at higher T. These predictions are in good agreement with recent transport experiments in highly disordered films of superconducting materials.Comment: Discussion about 2d case added. Proceddings of TIDS 13, to be published in Annals of Physic

    Cerebral hierarchies: predictive processing, precision and the pulvinar

    Get PDF
    This paper considers neuronal architectures from a computational perspective and asks what aspects of neuroanatomy and neurophysiology can be disclosed by the nature of neuronal computations? In particular, we extend current formulations of the brain as an organ of inferenceβ€”based upon hierarchical predictive codingβ€”and consider how these inferences are orchestrated. In other words, what would the brain require to dynamically coordinate and contextualize its message passing to optimize its computational goals? The answer that emerges rests on the delicate (modulatory) gain control of neuronal populations that select and coordinate (prediction error) signals that ascend cortical hierarchies. This is important because it speaks to a hierarchical anatomy of extrinsic (between region) connections that form two distinct classes, namely a class of driving (first-order) connections that are concerned with encoding the content of neuronal representations and a class of modulatory (second-order) connections that establish contextβ€”in the form of the salience or precision ascribed to content. We explore the implications of this distinction from a formal perspective (using simulations of feature–ground segregation) and consider the neurobiological substrates of the ensuing precision-engineered dynamics, with a special focus on the pulvinar and attention

    Higher Order Methods for Simulations on Quantum Computers

    Full text link
    To efficiently implement many-qubit gates for use in quantum simulations on quantum computers we develop and present methods reexpressing exp[-i (H_1 + H_2 + ...) \Delta t] as a product of factors exp[-i H_1 \Delta t], exp[-i H_2 \Delta t], ... which is accurate to 3rd or 4th order in \Delta t. The methods we derive are an extended form of symplectic method and can also be used for the integration of classical Hamiltonians on classical computers. We derive both integral and irrational methods, and find the most efficient methods in both cases.Comment: 21 pages, Latex, one figur

    BTECH: A Platform to Integrate Genomic, Transcriptomic and Epigenomic Alterations in Brain Tumors

    Get PDF
    The identification of molecular signatures predictive of clinical behavior and outcome in brain tumors has been the focus of many studies in the recent years. Despite the wealth of data that are available in the public domain on alterations in the genome, epigenome and transcriptome of brain tumors, the underlying molecular mechanisms leading to tumor initiation and progression remain largely unknown. Unfortunately, most of these data are scattered in multiple databases and supplementary materials of publications, thus making their retrieval, evaluation, comparison and visualization a rather arduous task. Here we report the development and implementation of an open access database (BTECH), a community resource for the deposition of a wide range of molecular data derived from brain tumor studies. This comprehensive database integrates multiple datasets, including transcript profiles, epigenomic CpG methylation data, DNA copy number alterations and structural chromosomal rearrangements, tumor-associated gene lists, SNPs, genomic features concerning Alu repeats and general genomic annotations. A genome browser has also been developed that allows for the simultaneous visualization of the different datasets and the various annotated features. Besides enabling an integrative view of diverse datasets through the genome browser, we also provide links to the original references for users to have a more accurate understanding of each specific dataset. This integrated platform will facilitate uncovering interactions among genetic and epigenetic factors associated with brain tumor development. BTECH is freely available at http://cmbteg.childrensmemorial.org/. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12021-010-9091-9) contains supplementary material, which is available to authorized users

    Unemployed, uneducated and sick: the effects of socioeconomic status on health duration in the European Union

    Get PDF
    This paper employs a logistic model to measure the effect of socioeconomic and individual characteristics on the length of time an individual remains in good health. It employs an objective measure of physical health, the Physical and Mental Health Problems, Illnesses and Disabilities (PMID) measure in the ECHP dataset, for 13 European countries, for the years 1994-2002. The results show that socioeconomic status does affect the likelihood of individuals entering bad health. In particular, unemployment increases and education decreases the probability of a person ceasing to enjoy good health. Income effects, are however, somewhat weaker, being confined to a small number of countries and being mainly observed only for the highest income quartile. Interesting age and gender effects are also found
    • …
    corecore